Improving testing Efficiency using Cumulative Test Analysis

Ian Holden

Purpose

- · Introduce the concepts of CTA
- Show prototype implementation
- Share experiences
- · Encourage future involvement

Introduction - the problem

- Impossible to fully test
 - Large number of tests
 - Large number of environments
 - Long setup/execution times
 - High build rate
 - Legacy tests not well understood
 - Automation
 - Setup / teardown times and problems
 - Demoralising work

Introduction - need

- · Practical technique/tool
- Flexible and adaptable
- · Run a prioritised set of tests
 - Target the areas at most risk
 - Select the best tests
 - Best use of time available
 - Run as few as necessary
 - Free up resources
- New mind set (away from 100% pass)
 - Test effectiveness
 - Product quality
 - Risk of customers experiencing problems

Balancing act

Endless testing vs improving tests

Basic idea

- · Choose a baseline/reference build
- Target tests on untested changes since the reference
- Factor in risk, test effectiveness, test coverage, environments
- Accumulate results
- Produce useful reports for testers and managers

Targeting info

- Basic information for targeting
 - Code coverage for tests.
 - How good are the tests?
 - What is the impact of each change?

Test Suite Selection

Identifying Risk Areas

- Component at risk of containing or exposing a defect
- A change
- Typically a class or method
- · Code coverage data obtainable
- External dependency change

Assigning Impact to Risk Areas

- Impact an estimate of the probability of a serious defect in a single risk area
 - Introduced by developer
 - Found by customer
 - Likely severity of problem
- Use defaults: per component/package
 - defect rates, complexity, importance ...
- Other change specific considerations
 - Developer skill, size of change, dependency analysis ...
- Change increases, testing decreases
- Assess each factor as a probability and combine $I = P(A \text{ and } B \text{ and } C \dots)$

Evaluating Test Effectiveness

- Probability of running the test successfully and completely
- Can we trust the test results?
- · Analysis of previous run history
- · Consider age of test
- Early runs lower
- · Long time since last run lower

• • •

Selection of Tests to Run

- I = probability of serious defect in single risk area
- I*CC = probability of each (perfect) test finding defect in a risk area
- Combine probabilities to find TD for a test over all risk areas it covers
- Factor in test effectiveness. TP = TE*TD to get the probability of this test finding a defect. Use this to prioritise.

Simple example

- Sizes: values
- T3 has highest priority (P3)
- Now reduce impact of R3, R4 and R5 to allow for the effect of running the test

 I = I - CC*TE for each risk area covered by the chosen test

- Now remove T3 and repeat the process
- T2 is the next test

- Finally select T1
- Test priorities typically reduce rapidly
- they represent the probability of the test finding a serious defect
- To minimise the set of tests to run, choose a priority threshold.

Handling Test Environments

- Hardware and software configurations e.g. OS, database etc.
- · Prioritise
- Select environment for test
 - 1. environment specific test
 - 2. highest priority environment
- · Re-prioritise environments
- · Minimal approach, better techniques?

Accumulating Results

- · Maintain knowledge over builds of:
 - What needs testing
 - What tests have been run
- Accumulate:
 - Un-tested changes (risk areas)
 - Test results when no re-run is required
- Each build:
 - Reset Impact for new risk areas
 - Remove test results for targeted tests
 - Replace results for all tests run

Calculating Build Quality

- A function of:
 - Cumulative test results
 - Test effectiveness
 - Remaining risk (combination of remaining Impact for all risk areas)
 - Proportion of environments tested

• • •

Traditional - Cumulative Results

- New first results of running a test
- Rerun results or re-running a test
- Carried results carried over from a previous run

Impact of changes

Traditional - Changes versus testing completed

- Unique new impact of completely new changes
- New impact of new changes to areas previously changed
- Carried impact of untested changes carried over
- Tested the amount of impact tested in this build

Using CTA

- New first results of running a test
- Rerun results or re-running a test
- Carried results carried over from a previous run

Earlier and better coverage of the changes

- Unique new impact of completely new changes
- New impact of new changes to areas previously changed
- Carried impact of untested changes carried over
- Tested the amount of impact tested in this build

Summary

- · Focus on risk areas and their impact
- Match tests to risk areas (code coverage)
- · Prioritise and minimise tests to run
- Accumulate results
- · Benefits
 - Shortens time to find bugs
 - Better understanding of test effectiveness
 - More time to develop new tests