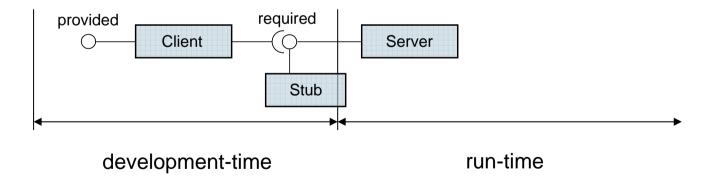
Enabling Run-Time System Verification through Built-in Testing

Daniel Brenner dbrenner@uni-mannheim.de


University of Mannheim Prof. Colin Atkinson, Ph.D.

Overview

- Motivation
- Run-Time Testing
- Method Sequence Testing Language

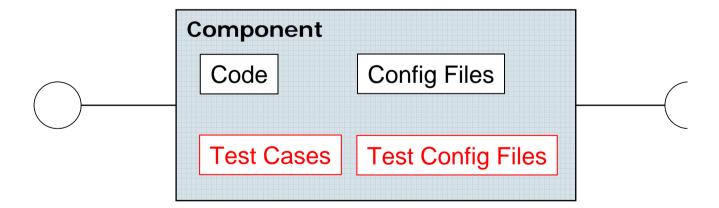
Motivation

- Components in an ad-hoc system do not know their communication partners at development-time
 - Dynamic structure
- Dependencies on other (required) components

Run-Time Testing

- Testing system in actual run-time environment
- Reaction to test result drives run-time testing
 - Not possible to stop system
- Testing for same understanding of functionality
 - Contract

Bank


boolean transferMoney(String, String, double);

Component's service delivery should not be affected

Built-In Testing

- Test cases are "built-into" component
- Black-box testing
 - Test cases are written against interfaces

Quantitative Testing

- Qualitative Testing
 - Binary 'passed' vs. 'failed'

Bank

boolean transferMoney(String from, String to, double amount);

- Quantitative Testing
 - Reliability assessment
 - Accuracy depends on sample size

Mail

void send(Message msg);

Method Sequence Testing Language

- Because of information hiding state not visible
 - Method sequence necessary
- Methods on their own are not testable
- Enhanceable with regular expressions

```
send(input);
List<Message> result = receive();
expects result.contains(input);
```

with input = new Message(...);

Mail

```
void send(Message msg);
List<Message> receive();
```

Future Work

- Implement MSTL
- Find good/appropriate reliability model
- Determine confidence measure
- ...

Thank you for your attention!