
1

Enabling Run-Time System 
Verification through Built-in 
Testing

Daniel Brenner
dbrenner@uni-mannheim.de

University of Mannheim
Prof. Colin Atkinson, Ph.D.



2

Overview

■ Motivation

■ Run-Time Testing

■ Method Sequence Testing Language



3

Motivation

■ Components in an ad-hoc system do not know their 
communication partners at development-time
■ Dynamic structure

■ Dependencies on other (required) components

development-time run-time

requiredprovided
Client

Stub

Server



4

Run-Time Testing

■ Testing system in actual run-time environment

■ Reaction to test result drives run-time testing
■ Not possible to stop system

■ Testing for same understanding of functionality
■ Contract

■ Component’s service delivery should not be affected

Bank

boolean transferMoney(String, String, double);



5

Built-In Testing

■ Test cases are „built-into“ component

■ Black-box testing
■ Test cases are written against interfaces

Component

Code

Test Cases

Config Files

Test Config Files



6

Quantitative Testing

■ Qualitative Testing
■ Binary ‘passed’ vs. ‘failed’

■ Quantitative Testing
■ Reliability assessment

■ Accuracy depends on sample size

Bank

boolean transferMoney(String from, String to, double amount);

Mail

void send(Message msg);



7

Method Sequence Testing Language

■ Because of information hiding state not visible
■ Method sequence necessary

■ Methods on their own are not testable

■ Enhanceable with regular expressions

send(input);
List<Message> result = receive();

expects result.contains(input);
with input = new Message(...);

Mail

void send(Message msg);

List<Message> receive();



8

Future Work

■ Implement MSTL

■ Find good/appropriate reliability model

■ Determine confidence measure

■ ... 



9

Thank you for your attention!


